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ABSTRACT

An epidemic model is a simplified means of desagbthe transmission of communicable disease through
individuals. Compartmental model is one of the estsivay to analyzed communicable diseases. Imp#per a nonlinear
mathematical deterministic compartmental SVIR mdelthe dynamics of infectious diseaseluding the role of a
preventive vaccine iproposed and analyze@ihe model has various kinds of parameter suaiaasgal birth rate, natural
death rate and dieses related death rate. Alsamimgpimmigrants are considered in this model. A elofbr the
transmission dynamics of an infectious diseasebleas presented arahalyzedthe stability of equilibrium points of this

model.
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INTRODUCTION

Mathematical modeling is one of the most importerdterials to analyze the characteristic of an tides
disease. One of the early triumphs of mathemagipalemiology was the formulation of a simple molglKermack and
McKendrick in 1927 [1]. The Kermack-McKendrick mddis a compartmental model based on relatively &mp
assumptions on the rates of flow between diffectatses of members of the population [2]. Varidansik of deterministic
models for the spread of infectious disease hawn lsnalyzed by mathematical modeling to control epé&lemic.
Epidemiological models have two kinds of equililnigoints. One of them is disease free equilibriDRE) at which the
population remains in the absence of disease drat @& endemic equilibrium [3]. There are two maijgses of control
strategies available to curtail the spread of iideis diseases: pharmaceutical interventions (drugscines etc) and
non-pharmaceutical interventions (social distancgarantine). Vaccination is important for thevefiation of infectious
disease in pharmaceutical interventions. Arinol éntaoduced vaccination of susceptible individual® an SIRS model
and also considered vaccinating a fraction of nemé&@4]. Buonomo et al studied the traditional $iRdel with 100%
efficacious vaccine [5]. The epidemic models witit@ination have been investigated recently by sautkors [6-12].
Effective vaccines have been used successfullpmtral smallpox, polio and measles. In this papeSiR type disease

has been considered when a vaccination programefeact.
MODEL FORMULATION

Let us now consider an SIR type disease when anattmn program is in effect and there is a cortstianv of
incoming immigrants. We defirg(t) , V(t), I (t), R(t) and N(t) be the number of susceptible, vaccinated, infective
recovered and total population respectively at ttm&Ve model new infections using the simple mas®adaw, so that
in general there areS new infections in unit time when is the rate of contact that is sufficient to traitshe disease.

We also assume a constant recovery yatéhe vaccine has the effect of reducing the sugubfy to infection by a
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factoro , so thato =0 means that the vaccine is completely effectivpriventing infection, whileé = 1 means that the

vaccine is utterly ineffective. The rate at whible susceptible population is vaccinategiswWe assume that there can be

disease related death and detinéo be the rate of disease-related death, while the rate of natural death that is not

related to the disease. The population is repledish two ways, birth and immigration. We assurneg #@il newborns
enter the susceptible class at the constant rate afd there is a constant incoming flow of immigsam, where some

portion p of immigrants are infective. We can now formulatds model, dividing the population into four

classes — susceptil(i8) , vaccinateqV), infective (1) and recovere(R).

In summary, the assumptions we have in this madas ifollows:

e S(t),I(t), V() , R(t) and N(t) are the numbers of susceptible, infective, vademharecovered and total

population at time respectively.

e There is a constant flow A of new members intogbpulation per unit time, where fractiomof immigrants is

infective(0< p<1).

* The vaccine has effect of reducing infection byetdr of o, so thato =0 means that the vaccine is completely

effective in preventing infection, while =1 means that the vaccine is utterly ineffective.

* ¢ is the rate at which the susceptible populatioratcinated.

* The disease can be fatal to some infective andefieed 8 to be the rate of disease related death.

! dooby

Figure 1: Diagram of SVIR Model

» There is a constant per capita natural death giatd .
* Fraction y = 0of infective recovers in unit time.

e aN is the infectious contact rate per person in timié.
* Alis the constant natural birth rate, with all newtsocoming into the susceptible class.

The differential equations of this model are gitgn

S =Q@0-p)A+A-a9 - (u+@S
V'=¢5-oaVl - (N

"= pA+as +oaVl = (u+y+ p)l
R=p-1R

@)

Note that the total population is the sum of thasses: susceptible, infective, vaccinated and exedyi.e,
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N() =S +V () +1(1) +R() (@)

So, N'(t) =S'@t)+V'(t)+1'(t) + R'(t)

Using (1) and (2) we get

= N'= A+A- N -/

We can get an alternate but yet equivalent modeéphacingS with N-V-1-R. Now the model becomes:

V'=z¢(N-1-R)-ogaVl —(u+¢\V

I'=pA+a(N-Q-0)V -1 -R)I = (u+y+p)l 3
Ri=p - IR

N'=A+A-iN-/

The Jacobean matrix of the above system is

0+, 0, 0 4, 0 4,
@(V) é(v) 6_5Q(V) @(V)
;- aa—v(|) %_I(I) %_R(l) %—N(l)
W(N) E(N,) ﬁ(Nl) W(N)
ool ~u-¢ - g-oav -9 @
e = (g -Dal -2al +ta(N-QL-oV-R)-(u+y+p) -a a
ie.,J= 0 , 40
0 -8 0 -u

EQUILIBRIUM CONDITIONS

We can write the equilibrium conditions by lettitige right hand side equations of (3) to be zer@ &duilibrium
conditions are

AN-1 -R)—gaVl —(u+¢@V =0 4)
pA+a(N-@1-o)V -1 -R)I -(u+y+p5)I =0 (5)
N -uR=0 (6)

A+A-iN-fB =0 @

From (7) we get

_A+A-f
u

N

Again from (6) we get

R:A
U
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Solving (4) for V and substituting the valueshNo&ndR we get

dA+A-(B+u+p)
plaot +u+g)

Eliminating N,V and R by substituting these values(5) and simplifying we get a cubic equation tbe
equilibrium values of of the form

EI*+BI?+Cl +D =0 (8)
where E=-a’c(y+ u+p)
B =-a(goy+ uoy+ uy - aoA+ ugo + uo + fuo - alho + j* + Bu)
C =~(p+ p)uy+((@+ 1) + p)aA+ agoh - (u+ B up- 11° - B’ + auh
D = a@oA - (@+ [) Hy + QUOPA+ aA+ aog — 12 g— Bug— (1 + B) 1 + aui
VACCINE REPRODUCTIVE NUMBER

Let us consider the case when there are no infeatimigrants, i.ep = 0. So From (3) we get

V'=z¢(N-1 -R)-cgaVl —(u+¢V

I'=a(N-@L-0o)V -1 -R)l —(u+y+ )l 9

Ri=p - IR

N'=A+A-iN-/

We can write the equilibrium conditions by lettitige right-hand side of (9) be zero. The equilibricomditions
are.

AN-1 -R)y—ogaVl —(u+¢@V =0 (10)

a(N-@L-oV -1 -RI -(u+y+p)1 =0 (11)

A -pR=0 12)

A+A-iN-p£ =0 (13)

From (13) we get

N :M j14
U
Again from (12) we get
7%

From (11) we can easily see that there is disa&seefquilibrium]=0.
At disease-free equilibrium (DFE) we can evaluhtdther equilibrium values & andN using (14) and (15)

_A+A
u

R=0, N
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Solving (10) forV and substituting The values fandR we get

y = UA+N)
U+ @)

So, the DFEP, (V,,1,R,N) =(
° UL+ @) U

AA+N) A+/\]

Now the Jacobian matrix &, is

—H-Q —¢—Ua—¢(A+A) 2
U+ @)

3,=| o a’(A+A—(1—J)¢(A+A)J—(,u+y+,6’) 0 o0
U U+ )

0 y -4 0

L o o 0 -y

The eigenvalues of the above matrix are

A =-H

A ==(U+9)

A, :a(ﬂ_ @-o) W“A)j—(w y+pB)
U HU+ @)

Since for positive parametel,, and A, are negative, the only condition for stability@fE is A, <0.

ie., a[u—(l—a)wj—(,u+y+ﬁ<0
U U1+ )

= a(u—(l-d)wj<(#+y+ﬂ
U U+ @)

(ago +ap)(A+N)

Up+9 <uryep

(ago +au)(A+N) 4
UU+P(u+y+p

Thus we can define a vaccine reproductive numBé&p) = (ago + ap)(A+A)
H(p+@(u+y+p)

asymptotically stable ifR(¢) <1. In the absence of vaccine (hegze 0), we define the basic reproductive nhumber as

and the DFE is locally

a(A+AN)

AN up+y+p)

WHEN THERE ARE NO INFECTIVE IMMIGRANTS
For the Caseo =1 and p=0:

Let us first consider the two extreme cases inoim@vestigate endemic equilibrium for the mo®l The first
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case is when the vaccine is useless and thereiigewtive immigrant, i.eo =1 and p = 0. Our system becomes

S =A+A-a9 - (u+¢)S

V'=¢B-aVl - N
I"'=aS +aVl - (u+y+p)l
R=p-1R

with N(t) = S(t) +V(t) + 1 (t) + R(t) . Note thatR(g) reduces toR, when g =1. By substitution and using the

equilibrium conditions, one can find there is ademic equilibrium

11 2 GATN ZUBEY L) hich exist only wherR, = a(A*N) g

a(B+y+H) U +y+p)

For the Cases = 0 andp = 0:

If we suppose that the vaccine is completely eiffectand that there are no infective immigrants,
i.e.o =0 andp = 0, then the model becomes

S=A+A-a9 -(u+¢)S

V'i=¢S- Vv
I"'=aS = (u+y+p)
R=p - IR

with N(t) = S(t) +V (t) + 1 (t) + R(t) . Note After complicated calculation we find thdtete is one endemic
equilibrium

" = a(A+ MK - pg+ B+y+H) which exist only wherR, C(GLIAV
a(B+y+u M+ y+p)

For the Case0<e<1andp=0:

Now we wish to consider the more general case whervaccine is partially ineffective and when thare no
infective immigrant, i.e. & ¢ < 1 andp = 0. Then the model becomes

S=A+A-a9 - (u+@S

V' = ¢5-oaVl - (N (16)
I'=a9 +ogaVl = (u+y+ Bl
R=j —/R

with N(t) =S(t) +V(t) + 1 (t) + R(t) . From equilibrium condition (8), we know that thers a disease-free

equilibrium regardless of different parameter valudfter factoring out this disease-free equilibmul, we get an
equilibrium condition as a quadratic polynomial afs

EI2+Bl +C=0 (17)
where E==a’c(y+u+p)
B = a(goy+ uoy+ uy - aoA+ pgo + (o + Buo - aho + u’ + Bu)

C = (p+ Wy —((9+ 10)T + p)aA—agol + (u + ) i+ 11 + fu? - apn
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Now an endemic equilibrium corresponds to a pasiteal solution of equation (17). Note that E >n@ ¢hat C<
0 precisely wherR(¢) > 1. Note also thaB® - 4EC >0 when C < 0. One can easily deduce that thereeisisgly one
endemic equilibrium wherR(¢) > 1, since there are two real roots and the prodfithiose two roots is negative. On the
other hand we can see that C > R{fp) < 1. Note that there are exactly two changes irsitpe of coefficients of equation

(17) if coefficient B < 0 and none when B > 0. Bgdaartes’ rule of signs one can conclude that #wemum number of

endemic equilibrium is two wheR(¢) < 1 and B < 0, and that there is no endemic equuilib when R(¢) < 1 and B > 0.

However it is shown that it is always the case thatsystem does not have any endemic equilibritneniR(g) < 1.

Proposition 1: For model (16) withR(¢) = (ago + ap)(A+N) there is no endemic equilibrium whé{g) < 1.
Hp+@(u+y+p)

Proof : We first assume thaR(¢) <1 and B<O0:

RQ) <1 < (ago+au)(A+N)<u(u+g)(u+y+pB)

B<O0 « aou(B+y+u)+a(B+y+u)(u+og) <a’c(A+N)
Combining above two conditions one can get thefalhg relation.

auB+y+p)(L+e)
u+op

gU(B+y+ )+ (B+y+ ) (u+og <
After expansion and some calculations we get

o u+og)u’ + 0’ up<0

This is a contradiction for all non negative partere ThereforeR(¢) <1 and B<O0 is impossible. So when
R(¢) <1,B>0. Note thatR(¢) <1 corresponds t& >0. Also clearlyE>0. So by Descartes rule of signs there is no

endemic equilibrium forlR(¢) <1.

WHEN THERE ARE NO DISEASE FATALITIES BUT INFECTIVE IMMIGRANTS

In this section we assume that there is a confitamtof infective immigrants into host populationdano disease

fatality, i.e., =0 and p# 0. Based on this assumption, the model equationsrbes

S=(Q1-pA+A-a3 - (u+¢)S

V' =¢5-oaVl - (N
"= pA+aS +gaVl —(u+ y)l
R =) R

with N(t) = S(t) +V(t) + 1 (t) + R(t) .
So N'(t)=S't)+V'(t)+1'(t) + R (t) = A+ A—uN

Lim Lim
Now by theory of autonomous systetm N'(t) =0, Sot N(t) S AA K (say)
- 00 00 H

—

So, replacing by K-1-V-R we have reduced system of equations
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V'=gK -1 -V -R)-gaVl — N
I'= pA+a(K-1-V -R)I +gaVl = (u+ p)l (18)
Ri=p - /R
Equilibrium Conditions

Endemic equilibrium conditions are
#K-1-V -R)=0aVl + N
F:—Az(,u+y)—aa’\/—a(K ~V-1-R)
n =R
One can reduce these endemic equilibrium condifimiasone cubic equation oty substituting foK,V andR:
f(1)=EI*+BI*’+CI+D=0
where E=a%o(u+y)
B=al-ao(A+N)+(u+y)(u+op+oy)]
C =-pAuoa —a(A+N)(u+ag)+ u(u+y)(HU+e

D =-pAu*(u+q)

Lim
Since D <0 for positive parameter, thef(o) <0. AlsoI f(l)= oo, So there exist one or three positive
— 00

roots | *. Now let us considef'(l) = 3EI 2 + 2Bl +C . By Rolle’s theorem, iff (1) =0 has three distinct positive roots
then f'(1) =0 must have two distinct positive root8.<0 andC >0is necessary condition to three positive endemic
equilibriums.

Stability Analysis

The Jacobean matrix of the system (18) is

—oal —p-u —oaV - @ -9
J=| od -al oN-y+a(K-V-1-Ry-a -u -al
0 y —H

Using equilibrium conditioan—A =(u+y)-oaV -a(K-V -1 -R) we get

-oadl —p-u -ooN-¢ -¢@

pPA
J= oal —al _I—_al -al
0 4 —H

The characteristic equation is
A+al+a,i+a, =0

Where
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a, =oal +ai +pI—A+¢+2/1

(pg +2up)A

a, =ap +a’o(o -1V +a’d 2 + ((ap+au)o + 2au)l + aopA+ up+ 1 + I

2
a, = (a%01? + (aop+ au)l Jy + a’ou(o DIV +a’opl + (augo + ap?)| +aﬂapA+(Wml—”p)A

By the Routh-Hurwitz Criterion [13], the endemiaudidprium is globally stable if and only if
a >0, a,>0 andaa, >a,
CONCLUSIONS

We have formulated an epidemic model with vaccoratind investigated their dynamical behaviors. Byans
of the Jacobean matrix, we obtained their vaccepmraductive number and basic reproduction numbéictwplay a
crucial role. It has beeabserved that the DFE is locally asymptoticallybktaif and only if the vaccine reproductive
number is less than one. When the vaccine is is@esompletely effective and there is no infectimamigrant, the
endemic equilibrium is exist if and only if the laseproduction number is greater than one. Whenetlare no disease

fatalities but with infective immigrants we giveetbondition for endemic equilibrium and their stypicondition.
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